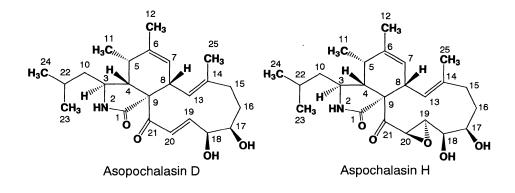
Structure of Aspochalasin H, a New Member of the Aspochalasin Family

TAIJIRO TOMIKAWA, KAZUO SHIN-YA, HARUO SETO, NORIYUKI OKUSA^a, TAKAYUKI KAJIURA^a and YOICHI HAYAKAWA*

Institute of Molecular and Cellular Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan ^a Pharmaceutical Research Laboratories, Ajinomoto Co., Inc., Suzuki-cho, Kawasaki, Kanagawa 210-8681, Japan

(Received for publication April 30, 2002)

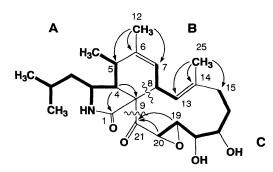

We previously reported that aspochalasin D^{1} showed selective cytotoxicity against *ras*-dependent Ba/F3 cells²). In this paper, we describe the structure of aspochalasin H (Fig. 1), a new member of the aspochalasin family produced by the aspochalasin D-producing strain, *Aspergillus* sp. AJ117509.

The fermentation was carried out in 500-ml Erlenmeyer flasks containing 100 ml of a medium consisting of soluble starch 3.0%, sucrose 1.0%, Pharmamedia 1.0%, Polypepton 0.5% Distiller's soluble 0.5%, MgSO₄ 0.05%, CaCO₃ 0.3% and NaCl 0.1% (pH 6.0) on a rotary shaker at 25°C for 6 days. The butanol extract of the culture (2 liters) was evaporated to an aqueous concentrate and then partitioned between EtOAc and H₂O. The organic layer was subjected to silica gel column chromatography with CHCl₃-MeOH (20:1). The eluate was purified by HPLC using a Senshu-Pak PEGASIL ODS column with 65% MeOH. The purified

fraction was concentrated to dryness to give a colorless powder (4.8 mg) of aspochalasin H.

The molecular formula of aspochalasin H was established to be $C_{24}H_{35}NO_5$ by high-resolution FAB-MS. The ¹³C and ¹H NMR spectra of aspochalasin H exhibited 24 carbon and 35 proton signals (Table 1). A heteronuclear $(HMOC)^{3}$ experiment multiple-quantum coherency established ¹H-¹³C one-bond connectivities as shown in Table 1. A COSY experiment revealed three spin networks to generate partial structures A to C (Fig. 2). Proton and carbon chemical shifts for 19- and 20-positions and their vicinal coupling constant (1.5 Hz) assigned this part to a trans epoxide moiety. The heteronuclaer multiple-bond correlation (HMBC)⁴⁾ spectrum of aspochalasin H displayed ¹H-¹³C long-range couplings from 12-H₃ to C-5, C-6 and C-7, and from 25-H₃ to C-13, C-14 and C-15, indicating the connections between partial structures A and **B** via C-6, and between **B** and **C** via C-14 as shown in Fig. 2. A ketone carbonyl (C-21) revealed long-range couplings from 19-H and 20-H, and was required to be joined to C-20. ¹H-¹³C long-range correlations from 4-H to an amide carbonyl (C-1) and a quaternary carbon (C-9) showed the presence of a γ -lactam ring. In the remaining connectivities, each C-8, C-9 and C-21 required additional carbon-carbon bonds from their chemical shifts, indicating that C-8 and C-21 were connected with C-9. The geometrical configuration of C-13 was determined to be Ebased on an upfield chemical shift for C-25 and an NOE between 8-H and 25-H₃. A NOESY experiment exhibited NOEs between 5-H and 8-H, between 4-H and 10-H, and between 3-H and 11-H, indicating β configurations for 4-H, 5-H and 8-H, and an α configuration for 3-H (Fig. 3). An

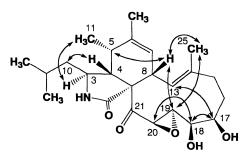
Fig. 1. Structures of aspochalasins D and H.



* Corresponding author: hayakawa@iam.u-tokyo.ac.jp

No.	δ _c	$\delta_{\rm H}$ (multiplicity, $J = {\rm Hz}$)	No.	$\delta_{\rm C}$	$\delta_{\rm H}$ (multiplicity, $J = {\rm Hz}$)
1	174.6		14	136.0	
2		6.06 (broad s)	15	38.9	2.25 (t, 13.0)
3	51.7	3.08 (dt, 10.0, 3.5)			2.11 (m)
4	52.8	2.64 (d, 3.5)	16	29.3	2.12 (m)
5	35.4	2.58 (m)			1.53 (m)
6	140.7		17	72.9	4.04 (s)
7	125.5	5.38 (m)	18	78.4	3.37 (d, 7.0)
8	44.1	3.02 (d, 11.0)	19	61.7	2.62 (dd, 7.0, 1.5)
9	67.4		20	54.7	4.19 (d, 1.5)
10	48.6	1.29 (m)	21	205.6	
		1.19 (m)	22	25.2	1.53 (m)
11	13.7	1.19 (3H, d, 7.0)	23	23.6	0.90 (3H, d, 6.0)
12	20.1	1.75 (3H, s)	24	21.2	0.88 (3H, d, 6.0)
13	124.6	5.98 (d, 11.0)	25	15.5	1.42 (3H, s)

Table 1. ¹³C (125 MHz) and ¹H (500 MHz) NMR assignments for aspochalasin H in CDCl₃.


Fig. 2. COSY and HMBC data summary for aspochalasin H.

Bold lines show proton spin networks and arrows indicate ¹H-¹³C long-range couplings.

NOE between 8-H and 19-H showed that the ketone carbonyl (C-21) was oriented to the β side. NOEs between 8-H, 19-H and 25-H₃ required these protons to be on the β side of the 11-membered ring. On the other hand, NOEs from 18-H to 17-H and 20-H, and from 13-H to 17-H revealed their α orientations. The *cis* configuration for the diol moiety was supported by a small coupling constant (<1 Hz) between 17-H and 18-H. The relative stereochemistry of aspochalasin H thus obtained was

Fig. 3. Relative stereochemistry of aspochalasin H revealed by a NOESY experiment.

identical with that of aspochalasin D^{2} .

Aspochalasin H did not show cytotoxity against *ras*dependent Ba/F3 cells at less than $25 \,\mu$ g/ml, whereas aspochalasin D induced cell death with an IC₅₀ of 0.49 μ g/ml. The carbonyl-conjugated olefin at C-19 appeared to be significant for cytotoxicity of the aspochalasins.

Acknowledgment

This work was supported in part by Research for the Future, Japan Society for Promotion of Science and a Grant-in-Aid for Scientific Research on Priority Areas, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

References

- KELLER-SCHIERLEIN, W. & E. KUPFER: Stoffwechselprodukte von Mikroorganismen. Über die Aspochalasine A, B, C und D. Helv. Chem. Acta 62: 1501~1524, 1979
- 2) TOMIKAWA, T.; K. SHIN-YA, T. KINOSHITA, A. MIYAJIMA, H. SETO & Y. HAYAKAWA: Selective cytotoxicity and

stereochemistry of aspochalasin D. J. Antibiotics 54: 379~381, 2001

- 3) SUMMERS, M. S.; L. G. MARZILLI & A. BAX: Complete ¹H and ¹³C assignments of coenzyme B_{12} through the use of new two-dimensional NMR experiments. J. Am. Chem. Soc. 108: 4285~4294, 1986
- BAX, A. & M. F. SUMMERS: ¹H and ¹³C assignments from sensitivity-enhanced detection of heteronuclear multiplebond connectivity by multiple quantum NMR. J. Am. Chem. Soc. 108: 2093~2094, 1986